13

phosphate217; C_s site symmetry in fluorapatite218,219, Ca₁₀(PO₄)₆F₂ and in chlorapatite220, Ca10(PO4)6Cl2.

Other oxoanions which have been examined are perchlorates221-225, molybdates and tungstates226-234, perrhenates235-238, permanganates239-241, pertechnates²⁴²⁻²⁴³, chromates(V)²⁴⁴⁻²⁴⁶, chromates(VI)²⁴⁷⁻²⁴⁸, selenates (refs. 249, 250) and garnets²⁵¹⁻²⁵⁴

The vibrational spectra of several ammonium²⁵⁵⁻²⁵⁹ and phosphonium (refs. 260-263) salts have been examined, and deuteration studies have been used to classify the lattice modes into translatory and rotatory modes.

Tetrahedral264-271 and square planar272 tetrahalo salts have been examined together with borohydride salts273 and silicates274.

The following tetracoordinate species have been examined: the tetracyanonickelate(II) ion275, tetracyanoethylene276-278, trans-bis(dimethylsulphide)dibromoplatinum(II)279; tetrakis(thioacetamide)copper(I) chloride280 and tetrakis-(thiourea)nickel(II) dichloride280.

F. Hexa-atomic and 5-coordinate species

The gas phase Raman spectra of the pentachlorides and pentabromides of Sb, Nb, Ta and Mo are consistent with the presence of trigonal bipyramidal species281. In the solid state TaX5, NbX5 and MoCl5 exist as M2X10 dimers282. Solid NbF, and SbF, consist of cis-F-bridged polymers283, whilst matrix-isolated SbF₄ is reported as being of $C_{4\nu}$ point group²⁸⁴. Solid SbCl₅ exists in two modifications, the spectrum of the high-temperature phase resembling that of the liquid (refs. 285, 286). The vibrational spectra of crystalline hydrazine²⁸⁷⁻²⁸⁹ are consistent with a C_2^2 space group, while the spectra of liquid tetrafluorohydrazine

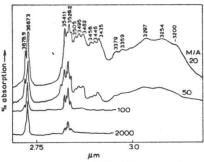


Fig. 5. OH stretching mode of CH₃OH in argon at various concentrations. (Reproduced from A. J. Barnes and H. E. Hallam, *Trans. Faraday Soc.*, 66 (1970) 1920.)

J. Mol. Structure, 10 (1971) 1-30

EFFECT OF PHASE AND PRESSURE ON VIBRATIONAL SPECTRA indicate the presence of both the trans and the gauche isomers 290-292.

The infrared and Raman spectra of B₂Cl₄ and B₂F₄ suggest a staggered D_{2d} configuration in the gaseous²⁹³ and liquid²⁹⁴ states, whilst B₂Cl₄ possesses the planar D_{2b} configuration in the solid state²⁹³. Oxalyl chloride²⁹⁵ is reported to have C_{2b} site symmetry whilst glyoxal²⁹⁶ has a C_i site symmetry. The low temperature modification of acetonitrile has either the D_{2h}^1 or D_{2h}^9 space groups²⁹⁷, whilst trifluoroacetonitrile has a C_3 site symmetry and a $C_{2\nu}$ factor group 298 .

The infrared spectrum of matrix-isolated methanol monomer has been obtained. Concentration studies resulted in the identification of the open chain dimer, trimer and tetramer species²⁹⁹ (Fig. 5). The infrared spectrum of the high temperature phase of crystalline methanethiol indicates an orthorhombic unit cell containing eight molecules 300. The site symmetry in crystalline carbonyl cyanide is reported to be either C_s or C_2 in a C_{2s} lattice³⁰¹. The infrared and Raman spectra of crystalline $HReO_4$ are consistent with the $C_{3\nu}$ structure $HOReO_3$. Aqueous solutions ($\leq 80 \frac{90}{90}$) contain only the ReO_4^- anion³⁰².

Deuteration studies have been used to classify the lattice modes of solid ethylene303-305. The single crystal Raman spectrum of the five coordinate species bis(trimethylamine)trichloroindium(III) has been reported306.

G. Species with seven or more atoms

The Raman spectra of XeF6 have been studied in the gaseous, liquid and solid states307. The results indicate that either the ground state vapour phase molecules possess a symmetry lower than O_h or they have some very unusual electronic properties that markedly influence the vibrational spectrum.

The vibrational spectra of polycrystalline UF₆ indicate a D_{4h} site symmetry (ref. 308). The infrared spectra of crystalline³⁰⁰ CrF₆, MoF₆, and OsF₆ also indicate a distortion of the regular octahedral structure found in the vapour phase.

The Raman spectrum of solid SF₆ shows a splitting of all three fundamentals into a number of components310. Comparison with previous infrared data indicates that a centre of symmetry is maintained at the site. There are substantial differences between the solution 311 and solid state 312 Raman frequencies of WCl₆.

The vibrational spectra of a variety of hexahalometallates have been reported (refs. 313-320.) Splittings of several of the fundamental bands have been observed in the solid state spectra.

The infrared 321-323 and Raman 324-326 spectra of single crystals of sodium nitroprusside have been reported and assigned. Other hexacoordinate salts which have been studied have been hexanitro salts ³²⁷ and ruthenium nitrosopentahalides (ref. 328).

The Raman spectrum of sulphur vapour 129 at 180 °C indicates the presence of the $S_6,\,S_7$ and S_8 species. The Raman spectra of polycrystalline 32.9,330 and single crystal³³¹ samples of rhombic sulphur show site and factor group splitting of the fundamental bands. The Raman spectrum of solid Si₂Cl₆ displays five of the

J. Mol. Structure, 10 (1971) 1-30